diff options
Diffstat (limited to 'build/cpp/sci_minconTMINLP.cpp~')
-rw-r--r-- | build/cpp/sci_minconTMINLP.cpp~ | 324 |
1 files changed, 0 insertions, 324 deletions
diff --git a/build/cpp/sci_minconTMINLP.cpp~ b/build/cpp/sci_minconTMINLP.cpp~ deleted file mode 100644 index 9d4ccd3..0000000 --- a/build/cpp/sci_minconTMINLP.cpp~ +++ /dev/null @@ -1,324 +0,0 @@ -// Copyright (C) 2015 - IIT Bombay - FOSSEE -// -// Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani -// Organization: FOSSEE, IIT Bombay -// Email: toolbox@scilab.in -// This file must be used under the terms of the CeCILL. -// This source file is licensed as described in the file COPYING, which -// you should have received as part of this distribution. The terms -// are also available at -// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt - -#include "minconTMINLP.hpp" -#include "sci_iofunc.hpp" - -extern "C" -{ -#include "call_scilab.h" -#include <api_scilab.h> -#include <Scierror.h> -#include <BOOL.h> -#include <localization.h> -#include <sciprint.h> -#include <string.h> -#include <assert.h> -} - -using namespace Ipopt; -using namespace Bonmin; - -#define DEBUG 0 - -minconTMINLP::~minconTMINLP() -{ - if(finalX_) delete[] finalX_; -} - -// Set the type of every variable - CONTINUOUS or INTEGER -bool minconTMINLP::get_variables_types(Index n, VariableType* var_types) -{ - #ifdef DEBUG - sciprint("Code is in get_variables_types\n"); - #endif - n = numVars_; - for(int i=0; i < n; i++) - var_types[i] = CONTINUOUS; - for(int i=0 ; i < intconSize_ ; ++i) - var_types[(int)(intcon_[i]-1)] = INTEGER; - return true; -} - -// The linearity of the variables - LINEAR or NON_LINEAR -bool minconTMINLP::get_variables_linearity(Index n, Ipopt::TNLP::LinearityType* var_types) -{ - #ifdef DEBUG - sciprint("Code is in get_variables_linearity\n"); - #endif - for(int i=0;i<n;i++) - { - var_types[i] = Ipopt::TNLP::NON_LINEAR; - } - return true; } - -// The linearity of the constraints - LINEAR or NON_LINEAR -bool minconTMINLP::get_constraints_linearity(Index m, Ipopt::TNLP::LinearityType* const_types) -{ - - #ifdef DEBUG - sciprint("Code is in get_constraints_linearity\n"); - #endif - for(int i=0;i<numLC_;i++) - { - const_types[i] = Ipopt::TNLP::LINEAR; - } - - for(int i=numLC_;i<m;i++) - { - const_types[i] = Ipopt::TNLP::NON_LINEAR; - } - return true;} - -//get NLP info such as number of variables,constraints,no.of elements in jacobian and hessian to allocate memory -bool minconTMINLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g, Index& nnz_h_lag, TNLP::IndexStyleEnum& index_style) -{ - #ifdef DEBUG - sciprint("Code is in get_nlp_info\n"); - #endif - n=numVars_; // Number of variables - m=numCons_; // Number of constraints - nnz_jac_g = n*m; // No. of elements in Jacobian of constraints - nnz_h_lag = n*n; // No. of elements in Hessian of the Lagrangian. - index_style=TNLP::C_STYLE; // Index style of matrices - return true; -} - -//get variable and constraint bound info -bool minconTMINLP::get_bounds_info(Index n, Number* x_l, Number* x_u, Index m, Number* g_l, Number* g_u) -{ - #ifdef DEBUG - sciprint("Code is in get_bounds_info\n"); - #endif - unsigned int i; - for(i=0;i<n;i++) - { - x_l[i]=lb_[i]; - x_u[i]=ub_[i]; - } - for(i=0;i<m;i++) - { - g_l[i]=conLb_[i]; - g_u[i]=conUb_[i]; - } - return true; -} - -// This method sets initial values for required vectors . For now we are assuming 0 to all values. -bool minconTMINLP::get_starting_point(Index n, bool init_x, Number* x,bool init_z, Number* z_L, Number* z_U,Index m, bool init_lambda,Number* lambda) -{ - assert(init_x == true); - assert(init_z == false); - assert(init_lambda == false); - if (init_x == true) - { //we need to set initial values for vector x - for (Index var=0;var<n;var++) - {x[var]=x0_[var];}//initialize with 0. - } - return true; -} - -//get value of objective function at vector x -bool minconTMINLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value) -{ - #ifdef DEBUG - sciprint("Code is eval_f\n"); - #endif - char name[20]="_f"; - Number *obj; - if (getFunctionFromScilab(n,name,x, 7, 1,2,&obj)) - { - return false; - } - obj_value = *obj; - return true; -} - -//get value of gradient of objective function at vector x. -bool minconTMINLP::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f) -{ - #ifdef DEBUG - sciprint("Code is in eval_grad_f\n"); - #endif - char name[20]="_gradf"; - Number *resg; - if (getFunctionFromScilab(n,name,x, 7, 1,2,&resg)) - { - return false; - } - - Index i; - for(i=0;i<numVars_;i++) - { - grad_f[i]=resg[i]; - } - return true; -} - -// return the value of the constraints: g(x) -bool minconTMINLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g) -{ - #ifdef DEBUG - sciprint("Code is in eval_g\n"); - #endif - // return the value of the constraints: g(x) - if(m==0) - { - g=NULL; - } - else - { - char name[20]="_addnlc"; - Number *con; - if (getFunctionFromScilab(n,name,x, 7, 1,2,&con)) - { - return false; - } - - Index i; - for(i=0;i<m;i++) - { - g[i]=con[i]; - } - } - - return true; -} - -// return the structure or values of the jacobian -bool minconTMINLP::eval_jac_g(Index n, const Number* x, bool new_x,Index m, Index nele_jac, Index* iRow, Index *jCol,Number* values) -{ - #ifdef DEBUG - sciprint("Code is in eval_jac_g\n"); - #endif - if (values == NULL) - { - if(m==0)// return the structure of the jacobian of the constraints - { - iRow=NULL; - jCol=NULL; - } - else - { - unsigned int i,j,idx=0; - for(i=0;i<m;i++) - for(j=0;j<n;j++) - { - iRow[idx]=i; - jCol[idx]=j; - idx++; - } - } - } - else - { - if(m==0) - { - values=NULL; - } - else - { - double* resj; - char name[20]="_gradnlc"; - if (getFunctionFromScilab(n,name,x, 7, 1,2,&resj)) - { - return false; - } - int c = 0; - for(int i=0;i<m;i++) - { - for(int j=0;j<n;j++) - { - values[c] = resj[j*(int)m+i]; - c++; - } - } - } - } - return true; -} - -/* - * Return either the sparsity structure of the Hessian of the Lagrangian, - * or the values of the Hessian of the Lagrangian for the given values for - * x,lambda,obj_factor. -*/ - -bool minconTMINLP::eval_h(Index n, const Number* x, bool new_x,Number obj_factor, Index m, const Number* lambda,bool new_lambda, Index nele_hess, Index* iRow,Index* jCol, Number* values) -{ - #ifdef DEBUG - sciprint("Code is in eval_h\n"); - #endif - double check; - if (values==NULL) - { - Index idx=0; - for (Index row = 0; row < numVars_; row++) - { - for (Index col = 0; col < numVars_; col++) - { - iRow[idx] = row; - jCol[idx] = col; - idx++; - } - } - } - else - { char name[20]="_gradhess"; - Number *resCh; - if (getHessFromScilab(n,m,name,x, &obj_factor, lambda, 7, 3,2,&resCh)) - { - return false; - } - Index index=0; - for (Index row=0;row < numVars_ ;++row) - { - for (Index col=0; col < numVars_; ++col) - { - values[index++]=resCh[numVars_*row+col]; - } - } - } - return true; -} - -void minconTMINLP::finalize_solution(SolverReturn status,Index n, const Number* x, Number obj_value) -{ - #ifdef DEBUG - sciprint("Code is in finalize_solution\n"); - sciprint("%d",status); - #endif - finalObjVal_ = obj_value; - status_ = status; - if(status==0 ||status== 3) - { - finalX_ = new double[n]; - for (Index i=0; i<numVars_; i++) - { - finalX_[i] = x[i]; - } - } -} - -const double * minconTMINLP::getX() -{ - return finalX_; -} - -double minconTMINLP::getObjVal() -{ - return finalObjVal_; -} - -int minconTMINLP::returnStatus() -{ - return status_; -} |