diff options
Diffstat (limited to 'build/Bonmin/include/coin/ClpMatrixBase.hpp')
-rw-r--r-- | build/Bonmin/include/coin/ClpMatrixBase.hpp | 524 |
1 files changed, 524 insertions, 0 deletions
diff --git a/build/Bonmin/include/coin/ClpMatrixBase.hpp b/build/Bonmin/include/coin/ClpMatrixBase.hpp new file mode 100644 index 0000000..06dc523 --- /dev/null +++ b/build/Bonmin/include/coin/ClpMatrixBase.hpp @@ -0,0 +1,524 @@ +/* $Id: ClpMatrixBase.hpp 2078 2015-01-05 12:39:49Z forrest $ */ +// Copyright (C) 2002, International Business Machines +// Corporation and others. All Rights Reserved. +// This code is licensed under the terms of the Eclipse Public License (EPL). + +#ifndef ClpMatrixBase_H +#define ClpMatrixBase_H + +#include "CoinPragma.hpp" +#include "CoinTypes.hpp" + +#include "CoinPackedMatrix.hpp" +class CoinIndexedVector; +class ClpSimplex; +class ClpModel; +// Compilers can produce better code if they know about __restrict +#ifndef COIN_RESTRICT +#ifdef COIN_USE_RESTRICT +#define COIN_RESTRICT __restrict +#else +#define COIN_RESTRICT +#endif +#endif + +/** Abstract base class for Clp Matrices + +Since this class is abstract, no object of this type can be created. + +If a derived class provides all methods then all Clp algorithms +should work. Some can be very inefficient e.g. getElements etc is +only used for tightening bounds for dual and the copies are +deleted. Many methods can just be dummy i.e. abort(); if not +all features are being used. So if column generation was being done +then it makes no sense to do steepest edge so there would be +no point providing subsetTransposeTimes. +*/ + +class ClpMatrixBase { + +public: + /**@name Virtual methods that the derived classes must provide */ + //@{ + /// Return a complete CoinPackedMatrix + virtual CoinPackedMatrix * getPackedMatrix() const = 0; + /** Whether the packed matrix is column major ordered or not. */ + virtual bool isColOrdered() const = 0; + /** Number of entries in the packed matrix. */ + virtual CoinBigIndex getNumElements() const = 0; + /** Number of columns. */ + virtual int getNumCols() const = 0; + /** Number of rows. */ + virtual int getNumRows() const = 0; + + /** A vector containing the elements in the packed matrix. Note that there + might be gaps in this list, entries that do not belong to any + major-dimension vector. To get the actual elements one should look at + this vector together with vectorStarts and vectorLengths. */ + virtual const double * getElements() const = 0; + /** A vector containing the minor indices of the elements in the packed + matrix. Note that there might be gaps in this list, entries that do not + belong to any major-dimension vector. To get the actual elements one + should look at this vector together with vectorStarts and + vectorLengths. */ + virtual const int * getIndices() const = 0; + + virtual const CoinBigIndex * getVectorStarts() const = 0; + /** The lengths of the major-dimension vectors. */ + virtual const int * getVectorLengths() const = 0 ; + /** The length of a single major-dimension vector. */ + virtual int getVectorLength(int index) const ; + /** Delete the columns whose indices are listed in <code>indDel</code>. */ + virtual void deleteCols(const int numDel, const int * indDel) = 0; + /** Delete the rows whose indices are listed in <code>indDel</code>. */ + virtual void deleteRows(const int numDel, const int * indDel) = 0; +#ifndef CLP_NO_VECTOR + /// Append Columns + virtual void appendCols(int number, const CoinPackedVectorBase * const * columns); + /// Append Rows + virtual void appendRows(int number, const CoinPackedVectorBase * const * rows); +#endif + /** Modify one element of packed matrix. An element may be added. + This works for either ordering If the new element is zero it will be + deleted unless keepZero true */ + virtual void modifyCoefficient(int row, int column, double newElement, + bool keepZero = false); + /** Append a set of rows/columns to the end of the matrix. Returns number of errors + i.e. if any of the new rows/columns contain an index that's larger than the + number of columns-1/rows-1 (if numberOther>0) or duplicates + If 0 then rows, 1 if columns */ + virtual int appendMatrix(int number, int type, + const CoinBigIndex * starts, const int * index, + const double * element, int numberOther = -1); + + /** Returns a new matrix in reverse order without gaps + Is allowed to return NULL if doesn't want to have row copy */ + virtual ClpMatrixBase * reverseOrderedCopy() const { + return NULL; + } + + /// Returns number of elements in column part of basis + virtual CoinBigIndex countBasis(const int * whichColumn, + int & numberColumnBasic) = 0; + /// Fills in column part of basis + virtual void fillBasis(ClpSimplex * model, + const int * whichColumn, + int & numberColumnBasic, + int * row, int * start, + int * rowCount, int * columnCount, + CoinFactorizationDouble * element) = 0; + /** Creates scales for column copy (rowCopy in model may be modified) + default does not allow scaling + returns non-zero if no scaling done */ + virtual int scale(ClpModel * , const ClpSimplex * = NULL) const { + return 1; + } + /** Scales rowCopy if column copy scaled + Only called if scales already exist */ + virtual void scaleRowCopy(ClpModel * ) const { } + /// Returns true if can create row copy + virtual bool canGetRowCopy() const { + return true; + } + /** Realy really scales column copy + Only called if scales already exist. + Up to user to delete */ + inline virtual ClpMatrixBase * scaledColumnCopy(ClpModel * ) const { + return this->clone(); + } + + /** Checks if all elements are in valid range. Can just + return true if you are not paranoid. For Clp I will + probably expect no zeros. Code can modify matrix to get rid of + small elements. + check bits (can be turned off to save time) : + 1 - check if matrix has gaps + 2 - check if zero elements + 4 - check and compress duplicates + 8 - report on large and small + */ + virtual bool allElementsInRange(ClpModel * , + double , double , + int = 15) { + return true; + } + /** Set the dimensions of the matrix. In effect, append new empty + columns/rows to the matrix. A negative number for either dimension + means that that dimension doesn't change. Otherwise the new dimensions + MUST be at least as large as the current ones otherwise an exception + is thrown. */ + virtual void setDimensions(int numrows, int numcols); + /** Returns largest and smallest elements of both signs. + Largest refers to largest absolute value. + If returns zeros then can't tell anything */ + virtual void rangeOfElements(double & smallestNegative, double & largestNegative, + double & smallestPositive, double & largestPositive); + + /** Unpacks a column into an CoinIndexedvector + */ + virtual void unpack(const ClpSimplex * model, CoinIndexedVector * rowArray, + int column) const = 0; + /** Unpacks a column into an CoinIndexedvector + ** in packed format + Note that model is NOT const. Bounds and objective could + be modified if doing column generation (just for this variable) */ + virtual void unpackPacked(ClpSimplex * model, + CoinIndexedVector * rowArray, + int column) const = 0; + /** Purely for column generation and similar ideas. Allows + matrix and any bounds or costs to be updated (sensibly). + Returns non-zero if any changes. + */ + virtual int refresh(ClpSimplex * ) { + return 0; + } + + // Really scale matrix + virtual void reallyScale(const double * rowScale, const double * columnScale); + /** Given positive integer weights for each row fills in sum of weights + for each column (and slack). + Returns weights vector + Default returns vector of ones + */ + virtual CoinBigIndex * dubiousWeights(const ClpSimplex * model, int * inputWeights) const; + /** Adds multiple of a column into an CoinIndexedvector + You can use quickAdd to add to vector */ + virtual void add(const ClpSimplex * model, CoinIndexedVector * rowArray, + int column, double multiplier) const = 0; + /** Adds multiple of a column into an array */ + virtual void add(const ClpSimplex * model, double * array, + int column, double multiplier) const = 0; + /// Allow any parts of a created CoinPackedMatrix to be deleted + virtual void releasePackedMatrix() const = 0; + /// Says whether it can do partial pricing + virtual bool canDoPartialPricing() const; + /// Returns number of hidden rows e.g. gub + virtual int hiddenRows() const; + /// Partial pricing + virtual void partialPricing(ClpSimplex * model, double start, double end, + int & bestSequence, int & numberWanted); + /** expands an updated column to allow for extra rows which the main + solver does not know about and returns number added. + + This will normally be a no-op - it is in for GUB but may get extended to + general non-overlapping and embedded networks. + + mode 0 - extend + mode 1 - delete etc + */ + virtual int extendUpdated(ClpSimplex * model, CoinIndexedVector * update, int mode); + /** + utility primal function for dealing with dynamic constraints + mode=0 - Set up before "update" and "times" for primal solution using extended rows + mode=1 - Cleanup primal solution after "times" using extended rows. + mode=2 - Check (or report on) primal infeasibilities + */ + virtual void primalExpanded(ClpSimplex * model, int mode); + /** + utility dual function for dealing with dynamic constraints + mode=0 - Set up before "updateTranspose" and "transposeTimes" for duals using extended + updates array (and may use other if dual values pass) + mode=1 - Update dual solution after "transposeTimes" using extended rows. + mode=2 - Compute all djs and compute key dual infeasibilities + mode=3 - Report on key dual infeasibilities + mode=4 - Modify before updateTranspose in partial pricing + */ + virtual void dualExpanded(ClpSimplex * model, CoinIndexedVector * array, + double * other, int mode); + /** + general utility function for dealing with dynamic constraints + mode=0 - Create list of non-key basics in pivotVariable_ using + number as numberBasic in and out + mode=1 - Set all key variables as basic + mode=2 - return number extra rows needed, number gives maximum number basic + mode=3 - before replaceColumn + mode=4 - return 1 if can do primal, 2 if dual, 3 if both + mode=5 - save any status stuff (when in good state) + mode=6 - restore status stuff + mode=7 - flag given variable (normally sequenceIn) + mode=8 - unflag all variables + mode=9 - synchronize costs and bounds + mode=10 - return 1 if there may be changing bounds on variable (column generation) + mode=11 - make sure set is clean (used when a variable rejected - but not flagged) + mode=12 - after factorize but before permute stuff + mode=13 - at end of simplex to delete stuff + + */ + virtual int generalExpanded(ClpSimplex * model, int mode, int & number); + /** + update information for a pivot (and effective rhs) + */ + virtual int updatePivot(ClpSimplex * model, double oldInValue, double oldOutValue); + /** Creates a variable. This is called after partial pricing and may modify matrix. + May update bestSequence. + */ + virtual void createVariable(ClpSimplex * model, int & bestSequence); + /** Just for debug if odd type matrix. + Returns number of primal infeasibilities. */ + virtual int checkFeasible(ClpSimplex * model, double & sum) const ; + /// Returns reduced cost of a variable + double reducedCost(ClpSimplex * model, int sequence) const; + /// Correct sequence in and out to give true value (if both -1 maybe do whole matrix) + virtual void correctSequence(const ClpSimplex * model, int & sequenceIn, int & sequenceOut) ; + //@} + + //--------------------------------------------------------------------------- + /**@name Matrix times vector methods + They can be faster if scalar is +- 1 + Also for simplex I am not using basic/non-basic split */ + //@{ + /** Return <code>y + A * x * scalar</code> in <code>y</code>. + @pre <code>x</code> must be of size <code>numColumns()</code> + @pre <code>y</code> must be of size <code>numRows()</code> */ + virtual void times(double scalar, + const double * COIN_RESTRICT x, double * COIN_RESTRICT y) const = 0; + /** And for scaling - default aborts for when scaling not supported + (unless pointers NULL when as normal) + */ + virtual void times(double scalar, + const double * COIN_RESTRICT x, double * COIN_RESTRICT y, + const double * COIN_RESTRICT rowScale, + const double * COIN_RESTRICT columnScale) const; + /** Return <code>y + x * scalar * A</code> in <code>y</code>. + @pre <code>x</code> must be of size <code>numRows()</code> + @pre <code>y</code> must be of size <code>numColumns()</code> */ + virtual void transposeTimes(double scalar, + const double * COIN_RESTRICT x, double * COIN_RESTRICT y) const = 0; + /** And for scaling - default aborts for when scaling not supported + (unless pointers NULL when as normal) + */ + virtual void transposeTimes(double scalar, + const double * COIN_RESTRICT x, double * COIN_RESTRICT y, + const double * COIN_RESTRICT rowScale, + const double * COIN_RESTRICT columnScale, + double * COIN_RESTRICT spare = NULL) const; +#if COIN_LONG_WORK + // For long double versions (aborts if not supported) + virtual void times(CoinWorkDouble scalar, + const CoinWorkDouble * COIN_RESTRICT x, CoinWorkDouble * COIN_RESTRICT y) const ; + virtual void transposeTimes(CoinWorkDouble scalar, + const CoinWorkDouble * COIN_RESTRICT x, CoinWorkDouble * COIN_RESTRICT y) const ; +#endif + /** Return <code>x * scalar *A + y</code> in <code>z</code>. + Can use y as temporary array (will be empty at end) + Note - If x packed mode - then z packed mode + Squashes small elements and knows about ClpSimplex */ + virtual void transposeTimes(const ClpSimplex * model, double scalar, + const CoinIndexedVector * x, + CoinIndexedVector * y, + CoinIndexedVector * z) const = 0; + /** Return <code>x *A</code> in <code>z</code> but + just for indices in y. + This is only needed for primal steepest edge. + Note - z always packed mode */ + virtual void subsetTransposeTimes(const ClpSimplex * model, + const CoinIndexedVector * x, + const CoinIndexedVector * y, + CoinIndexedVector * z) const = 0; + /** Returns true if can combine transposeTimes and subsetTransposeTimes + and if it would be faster */ + virtual bool canCombine(const ClpSimplex * , + const CoinIndexedVector * ) const { + return false; + } + /// Updates two arrays for steepest and does devex weights (need not be coded) + virtual void transposeTimes2(const ClpSimplex * model, + const CoinIndexedVector * pi1, CoinIndexedVector * dj1, + const CoinIndexedVector * pi2, + CoinIndexedVector * spare, + double referenceIn, double devex, + // Array for exact devex to say what is in reference framework + unsigned int * reference, + double * weights, double scaleFactor); + /// Updates second array for steepest and does devex weights (need not be coded) + virtual void subsetTimes2(const ClpSimplex * model, + CoinIndexedVector * dj1, + const CoinIndexedVector * pi2, CoinIndexedVector * dj2, + double referenceIn, double devex, + // Array for exact devex to say what is in reference framework + unsigned int * reference, + double * weights, double scaleFactor); + /** Return <code>x *A</code> in <code>z</code> but + just for number indices in y. + Default cheats with fake CoinIndexedVector and + then calls subsetTransposeTimes */ + virtual void listTransposeTimes(const ClpSimplex * model, + double * x, + int * y, + int number, + double * z) const; + //@} + //@{ + ///@name Other + /// Clone + virtual ClpMatrixBase * clone() const = 0; + /** Subset clone (without gaps). Duplicates are allowed + and order is as given. + Derived classes need not provide this as it may not always make + sense */ + virtual ClpMatrixBase * subsetClone ( + int numberRows, const int * whichRows, + int numberColumns, const int * whichColumns) const; + /// Gets rid of any mutable by products + virtual void backToBasics() {} + /** Returns type. + The types which code may need to know about are: + 1 - ClpPackedMatrix + 11 - ClpNetworkMatrix + 12 - ClpPlusMinusOneMatrix + */ + inline int type() const { + return type_; + } + /// Sets type + void setType(int newtype) { + type_ = newtype; + } + /// Sets up an effective RHS + void useEffectiveRhs(ClpSimplex * model); + /** Returns effective RHS offset if it is being used. This is used for long problems + or big gub or anywhere where going through full columns is + expensive. This may re-compute */ + virtual double * rhsOffset(ClpSimplex * model, bool forceRefresh = false, + bool check = false); + /// If rhsOffset used this is iteration last refreshed + inline int lastRefresh() const { + return lastRefresh_; + } + /// If rhsOffset used this is refresh frequency (0==off) + inline int refreshFrequency() const { + return refreshFrequency_; + } + inline void setRefreshFrequency(int value) { + refreshFrequency_ = value; + } + /// whether to skip dual checks most of time + inline bool skipDualCheck() const { + return skipDualCheck_; + } + inline void setSkipDualCheck(bool yes) { + skipDualCheck_ = yes; + } + /** Partial pricing tuning parameter - minimum number of "objects" to scan. + e.g. number of Gub sets but could be number of variables */ + inline int minimumObjectsScan() const { + return minimumObjectsScan_; + } + inline void setMinimumObjectsScan(int value) { + minimumObjectsScan_ = value; + } + /// Partial pricing tuning parameter - minimum number of negative reduced costs to get + inline int minimumGoodReducedCosts() const { + return minimumGoodReducedCosts_; + } + inline void setMinimumGoodReducedCosts(int value) { + minimumGoodReducedCosts_ = value; + } + /// Current start of search space in matrix (as fraction) + inline double startFraction() const { + return startFraction_; + } + inline void setStartFraction(double value) { + startFraction_ = value; + } + /// Current end of search space in matrix (as fraction) + inline double endFraction() const { + return endFraction_; + } + inline void setEndFraction(double value) { + endFraction_ = value; + } + /// Current best reduced cost + inline double savedBestDj() const { + return savedBestDj_; + } + inline void setSavedBestDj(double value) { + savedBestDj_ = value; + } + /// Initial number of negative reduced costs wanted + inline int originalWanted() const { + return originalWanted_; + } + inline void setOriginalWanted(int value) { + originalWanted_ = value; + } + /// Current number of negative reduced costs which we still need + inline int currentWanted() const { + return currentWanted_; + } + inline void setCurrentWanted(int value) { + currentWanted_ = value; + } + /// Current best sequence + inline int savedBestSequence() const { + return savedBestSequence_; + } + inline void setSavedBestSequence(int value) { + savedBestSequence_ = value; + } + //@} + + +protected: + + /**@name Constructors, destructor<br> + <strong>NOTE</strong>: All constructors are protected. There's no need + to expose them, after all, this is an abstract class. */ + //@{ + /** Default constructor. */ + ClpMatrixBase(); + /** Destructor (has to be public) */ +public: + virtual ~ClpMatrixBase(); +protected: + // Copy + ClpMatrixBase(const ClpMatrixBase&); + // Assignment + ClpMatrixBase& operator=(const ClpMatrixBase&); + //@} + + +protected: + /**@name Data members + The data members are protected to allow access for derived classes. */ + //@{ + /** Effective RHS offset if it is being used. This is used for long problems + or big gub or anywhere where going through full columns is + expensive */ + double * rhsOffset_; + /// Current start of search space in matrix (as fraction) + double startFraction_; + /// Current end of search space in matrix (as fraction) + double endFraction_; + /// Best reduced cost so far + double savedBestDj_; + /// Initial number of negative reduced costs wanted + int originalWanted_; + /// Current number of negative reduced costs which we still need + int currentWanted_; + /// Saved best sequence in pricing + int savedBestSequence_; + /// type (may be useful) + int type_; + /// If rhsOffset used this is iteration last refreshed + int lastRefresh_; + /// If rhsOffset used this is refresh frequency (0==off) + int refreshFrequency_; + /// Partial pricing tuning parameter - minimum number of "objects" to scan + int minimumObjectsScan_; + /// Partial pricing tuning parameter - minimum number of negative reduced costs to get + int minimumGoodReducedCosts_; + /// True sequence in (i.e. from larger problem) + int trueSequenceIn_; + /// True sequence out (i.e. from larger problem) + int trueSequenceOut_; + /// whether to skip dual checks most of time + bool skipDualCheck_; + //@} +}; +// bias for free variables +#define FREE_BIAS 1.0e1 +// Acceptance criteria for free variables +#define FREE_ACCEPT 1.0e2 + +#endif |