1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
function [x, sflag] = gflineq(a, b, p)
// This function finds a solution for linear equation Ax = b over a prime Galois field.
//
// Calling Sequence
// [X, SFLAG] = GFLINEQ(A, B)
// [X, SFLAG]= GFLINEQ(A, B, P)
//
// Description
// [X, SFLAG] = GFLINEQ(A, B) returns a particular solution (X) of AX=B in GF(2).
// If the equation has no solution, then X is empty and SFLAG = 0 else SFLAG = 1.
//
// [X, SFLAG]= GFLINEQ(A, B, P) returns a particular solution of the linear
// equation A X = B in GF(P) and SFLAG=1.
// If the equation has no solution, then X is empty and SFLAG = 0.
//
//
// Examples
// A=[1 0 1; 1 1 0; 1 1 1]
// p=3
// [x,vld] = gflineq(A,[1;0;1],p)
// disp(A,'A=')
// disp(x,'x=');
// if(vld)
// disp('Linear equation has solution x')
// else
// disp('Linear equation has no solution and x is empty')
// end
// disp( pmodulo(A*x,p),'B =')
//
// Authors
// Pola Lakshmi Priyanka, IIT Bombay
//*************************************************************************************************************************************//
// Check number of input arguments
[out_a,inp_a]=argn(0)
if inp_a >3 | out_a> 2 | inp_a <2 then
error('comm:gflineq: Invalid number of arguments')
end
// Error checking .
if inp_a < 3
p = 2;
elseif ( isempty(p) | length(p)~=1 | abs(p)~=p | ceil(p)~=p | length(factor(p))~=1 )
error('comm:gflineq:Input argument 3 must be a positive prime integer.');
end;
[row_a, col_a] = size(a);
[row_b, col_b] = size(b);
// Error checking - A & B.
if ( isempty(a) | ndims(a) > 2 )
error('comm:gflineq:Input argument 1 must be a two-dimensional matrix.');
end
if ( isempty(b) | ndims(b) > 2 | col_b > 1 )
error('comm:gflineq:Invalid dimensions of input argument 2 .');
end
if ( row_a ~= row_b )
error('comm:gflineq:Dimensions of A and B are not compatible');
end
if (( or( abs(a)~=a | floor(a)~=a | a>=p )) | ( or( abs(b)~=b | floor(b)~=b | b>=p )) )
error('comm:gflineq:Elements of input matrices should be integers between 0 and P-1.');
end
// Solution is found by using row reduction (Reducing it to echelon form)
ab = [a b]; // Composite matrix
[row_ab, col_ab] = size(ab);
row_i = 1;
col_i = 1;
row = [];
col = [];
while (row_i <= row_ab) & (col_i < col_ab)
// Search for a non zero element in current column
while (ab(row_i,col_i) == 0) & (col_i < col_ab)
idx = find( ab(row_i:row_ab, col_i) ~= 0 );
if isempty(idx)
col_i = col_i + 1; // No non zero element
else
// Swap the current row with a row containing a non zero element
// (preferably with the row with value 1).
idx = [ find(ab(row_i:row_ab, col_i) == 1) idx ];
idx = idx(1);
temp_row = ab(row_i,:)
ab(row_i,:) = ab(row_i+idx-1,:)
ab(row_i+idx-1,:) = temp_row
end
end
if ( ( ab(row_i,col_i) ~= 0 ) & ( col_i < col_ab ) )
// Set major element to 1.
if (ab(row_i,col_i) ~= 1)
ab(row_i,:) = pmodulo( field_inv( ab(row_i,col_i),p ) * ab(row_i,:), p );
end
// The current element is a major element.
row = [row row_i];
col = [col col_i];
// Find the other elements in the column that must be cleared,
idx = find(ab(:,col_i)~=0);
for i = idx
if i ~= row_i
ab(i,:) = pmodulo( ab(i,:) + ab(row_i,:) * (p - ab(i,col_i)), p );
end
end
col_i = col_i + 1;
end
row_i = row_i + 1;
end
if ( rank(ab) > rank( ab(:,1:col_a) ) )
disp('comm:gflineq:Solution does not exist');
x = [];
sflag = 0;
else
x = zeros(col_a, 1);
x(col,1) = ab(row,col_ab);
sflag = 1;
end
endfunction
function [x] = field_inv(a,n)
t = 0;
newt = 1;
r = n;
newr = a;
while newr ~= 0
quotient = floor(r / newr);
temp = t;
t = newt;
newt = temp -quotient*newt;
temp = r;
r = newr;
newr = temp - quotient*newr;
end
if r>1
[x c] = find( pmodulo( (1:(p-1)).' * (1:(p-1)) , p ) == 1 );
end
if t<0
t = t + n;
end
x = t;
endfunction
|