#define fmi2TypesPlatform_h #define fmi2TypesPlatform "default" /* Compatible */ typedef struct led_push_test_fmi2Component_s* fmi2Component; typedef void* fmi2ComponentEnvironment; /* Pointer to FMU environment */ typedef void* fmi2FMUstate; /* Pointer to internal FMU state */ typedef unsigned int fmi2ValueReference; typedef double fmi2Real; typedef int fmi2Integer; typedef int fmi2Boolean; typedef char fmi2Char; typedef const fmi2Char* fmi2String; typedef char fmi2Byte; #define fmi2True 1 #define fmi2False 0 #include "fmi2/fmi2Functions.h" #include #include void ModelicaFormatMessage(const char *fmt, ...) { va_list args; va_start(args, fmt); vprintf(fmt, args); va_end(args); } typedef struct led_push_test_fmi2Component_s { fmi2Real currentTime; fmi2Boolean fmi2BooleanVars[3]; void* extObjs[2]; } led_push_test_fmi2Component; led_push_test_fmi2Component led_push_test_component = { .fmi2BooleanVars = { fmi2False /*booleanExpression1._y*/, fmi2False /*booleanExpression2._y*/, fmi2False /*digitalReadBoolean1._y*/, }, }; #include /* TODO: Generate used builtin functions before SimCode */ static inline double om_mod(double x, double y) { return x-floor(x/y)*y; } #include "MDDAVRDigital.h" static inline fmi2Boolean Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_read(fmi2Component comp, void* om_port, fmi2Integer om_pin); static inline void Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_write(fmi2Component comp, void* om_port, fmi2Integer om_pin, fmi2Boolean om_value); static inline void* Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitRead_constructor(fmi2Component comp, fmi2Integer om_port, fmi2Integer om_pin); static inline void Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitRead_destructor(fmi2Component comp, void* om_digital); static inline void* Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitWrite_constructor(fmi2Component comp, fmi2Integer om_port, fmi2Integer om_pin); static inline void Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitWrite_destructor(fmi2Component comp, void* om_digital); static inline fmi2Boolean Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_read(fmi2Component comp, void* om_port, fmi2Integer om_pin) { fmi2Boolean om_b; om_b = MDD_avr_digital_pin_read(om_port, om_pin); return om_b; } static inline void Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_write(fmi2Component comp, void* om_port, fmi2Integer om_pin, fmi2Boolean om_value) { MDD_avr_digital_pin_write(om_port, om_pin, om_value); } static inline void* Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitRead_constructor(fmi2Component comp, fmi2Integer om_port, fmi2Integer om_pin) { void* om_dig; om_dig = MDD_avr_digital_pin_init(om_port, om_pin, fmi2False); return om_dig; } static inline void Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitRead_destructor(fmi2Component comp, void* om_digital) { MDD_avr_digital_pin_close(om_digital); } static inline void* Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitWrite_constructor(fmi2Component comp, fmi2Integer om_port, fmi2Integer om_pin) { void* om_dig; om_dig = MDD_avr_digital_pin_init(om_port, om_pin, fmi2True); return om_dig; } static inline void Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitWrite_destructor(fmi2Component comp, void* om_digital) { MDD_avr_digital_pin_close(om_digital); } fmi2Component led_push_test_fmi2Instantiate(fmi2String name, fmi2Type ty, fmi2String GUID, fmi2String resources, const fmi2CallbackFunctions* functions, fmi2Boolean visible, fmi2Boolean loggingOn) { static int initDone=0; if (initDone) { return NULL; } return &led_push_test_component; } fmi2Status led_push_test_fmi2SetupExperiment(fmi2Component comp, fmi2Boolean toleranceDefined, fmi2Real tolerance, fmi2Real startTime, fmi2Boolean stopTimeDefined, fmi2Real stopTime) { return fmi2OK; } fmi2Status led_push_test_fmi2EnterInitializationMode(fmi2Component comp) { comp->extObjs[1] /* digitalWriteBoolean1._digital EXTOBJ: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Functions.Digital.InitWrite */ = Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitWrite_constructor(comp, 2, 3); comp->extObjs[0] /* digitalReadBoolean1._digital EXTOBJ: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Functions.Digital.InitRead */ = Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_InitRead_constructor(comp, 2, 5); return fmi2OK; } fmi2Status led_push_test_fmi2ExitInitializationMode(fmi2Component comp) { return fmi2OK; } static fmi2Status led_push_test_functionODE(fmi2Component comp) { } static fmi2Status led_push_test_functionOutputs(fmi2Component comp) { comp->fmi2BooleanVars[2] /* digitalReadBoolean1._y DISCRETE */ = comp->fmi2BooleanVars[2] /* digitalReadBoolean1._y DISCRETE */; comp->fmi2BooleanVars[2] /* digitalReadBoolean1._y DISCRETE */ = Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_read(comp, comp->extObjs[0] /* digitalReadBoolean1._digital EXTOBJ: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Functions.Digital.InitRead */, 5);Modelica__DeviceDrivers_EmbeddedTargets_AVR_Functions_Digital_write(comp, comp->extObjs[1] /* digitalWriteBoolean1._digital EXTOBJ: Modelica_DeviceDrivers.EmbeddedTargets.AVR.Functions.Digital.InitWrite */, 3, comp->fmi2BooleanVars[2] /* digitalReadBoolean1._y DISCRETE */); } fmi2Status led_push_test_fmi2DoStep(fmi2Component comp, fmi2Real currentCommunicationPoint, fmi2Real communicationStepSize, fmi2Boolean noSetFMUStatePriorToCurrentPoint) { comp->currentTime = currentCommunicationPoint; /* TODO: Calculate time/state-dependent variables here... */ led_push_test_functionOutputs(comp); return fmi2OK; } int main(int argc, char **argv) { int terminateSimulation = 0; fmi2Status status = fmi2OK; fmi2CallbackFunctions cbf = { .logger = NULL, .allocateMemory = NULL /*calloc*/, .freeMemory = NULL /*free*/, .stepFinished = NULL, //synchronous execution .componentEnvironment = NULL }; fmi2Component comp = led_push_test_fmi2Instantiate("", fmi2CoSimulation, "", "", &cbf, fmi2False, fmi2False); if (comp==NULL) { return 1; } led_push_test_fmi2SetupExperiment(comp, fmi2False, 0.0, 0.0, fmi2False, 1.0); led_push_test_fmi2EnterInitializationMode(comp); // Set start-values? Nah... led_push_test_fmi2ExitInitializationMode(comp); double currentTime = 0.0; double h = 0.002; uint32_t i = 0; while (status == fmi2OK) { //retrieve outputs // fmi2GetReal(m, ..., 1, &y1); //set inputs // fmi2SetReal(m, ..., 1, &y2); //call slave and check status status = led_push_test_fmi2DoStep(comp, currentTime, h, fmi2True); switch (status) { case fmi2Discard: case fmi2Error: case fmi2Fatal: case fmi2Pending /* Cannot happen */: terminateSimulation = 1; break; case fmi2OK: case fmi2Warning: break; } if (terminateSimulation) { break; } i++; /* increment master time */ currentTime = 0.0 + h*i; } #if 0 if ((status != fmi2Error) && (status != fmi2Fatal)) { fmi2Terminate(m); } if (status != fmi2Fatal) { fmi2FreeInstance(m); } #endif }