From 9dae2503fef590a973bd2f949de1bf2b9132ea81 Mon Sep 17 00:00:00 2001 From: Sunil Shetye Date: Mon, 17 Mar 2025 15:51:20 +0530 Subject: add script_dump column from xcos_on_cloud --- blocks/saveAPI/fixtures/saveAPI.yaml | 24595 ++++++++++++++++++++++++++++++++- 1 file changed, 24284 insertions(+), 311 deletions(-) diff --git a/blocks/saveAPI/fixtures/saveAPI.yaml b/blocks/saveAPI/fixtures/saveAPI.yaml index 3a0e7e64..cacb8790 100644 --- a/blocks/saveAPI/fixtures/saveAPI.yaml +++ b/blocks/saveAPI/fixtures/saveAPI.yaml @@ -69,13 +69,13 @@ fields: category_name: Power Systems - model: saveAPI.gallery - pk: 622 + pk: 1 fields: save_id: gallery0 name: ch5_1 description: 'Electric Circuits (Author: M. Navhi And J. A. Edminister), 5) Analysis Methods, 5.1) The branch current method' - save_time: 2025-01-23 16:04:57+00:00 + save_time: 2025-03-17 15:49:07+00:00 book: 154 data_dump: media: gallery12.png + script_dump: '' - model: saveAPI.gallery - pk: 635 + pk: 14 fields: save_id: gallery13 name: ch8_9 description: 'Electric Circuits (Author: M. Navhi And J. A. Edminister), 8) First order Circuits, 8.9) Transitions at Switching Time' - save_time: 2025-01-23 16:04:57+00:00 + save_time: 2025-03-17 15:49:07+00:00 book: 154 data_dump: media: gallery18.png + script_dump: '// Find voltage across diode + + // Basic Electronics + + // By Debashis De + + // First Edition, 2010 + + // Dorling Kindersley Pvt. Ltd. India + + // Example 3-28 in page 180 + + + // Given data + + I=0.1075; // Cirremt across diode in A + + Rd=1; // Internal resistance of diode in ohm + + + // Calculation + + Vd=I*Rd; + + printf("Voltage across diode = %0.4f V",Vd); + + + // Result + + // Voltage across diode = 0.1075 V' - model: saveAPI.gallery - pk: 641 + pk: 20 fields: save_id: gallery19 name: example3_30 description: 'Basic Electronics (Author: D. De), 3) Diode Circuits, 3.30) Calculate R Il max' - save_time: 2025-01-23 16:04:57+00:00 + save_time: 2025-03-17 15:49:07+00:00 book: 181 data_dump: media: gallery20.png + script_dump: '// Calculate the dc load current + + // Basic Electronics + + // By Debashis De + + // First Edition, 2010 + + // Dorling Kindersley Pvt. Ltd. India + + // Example 3-8 in page 157 + + + // Given data + + Vm=280; // Supply voltage in V + + Rl=2000; // Load resistance in ohms + + Rf=500; // Internal resistance of the diodes in ohms + + + // Calculation + + Idc=(2*Vm)/(%pi*2500); + + Idc_t=Idc/2; + + printf("(a)I_dc = %0.2e A\n(b)I_dc(tube) = %0.2e A\n",Idc,Idc_t); + + printf("(c)Voltage across conducting diode is sinusoidal with a peak value 0.2 + Vm\n"); + + V_rms=0.905*(280*sqrt(2)); + + Pdc=Idc^2*Rl; + + R=(Rf/Rl)*100; + + printf("Rms voltage V_rms = %0.0f V\n",V_rms); + + printf("(d)DC output power = %0.1f W\n",Pdc); + + printf("(e)Percentage regulation = %0.0f percent",R); + + + // Result + + // (a) Idc = 71 mA, + + // (b) Idc_tube = 35.7 mA, + + // (c) V_rms = 358 V, + + // (d) P_dc = 10.167W, + + // (e) Percentage regulation = 25%' - model: saveAPI.gallery - pk: 643 + pk: 22 fields: save_id: gallery21 name: Ex10_1 description: 'Digital Control (Author: K. M. Moudgalya), 10) Special Cases of Pole Placement Control, 10.1) Effect of delay in control performance' - save_time: 2025-01-23 16:04:57+00:00 + save_time: 2025-03-17 15:49:08+00:00 book: 2048 data_dump: media: gallery46.png + script_dump: '' - model: saveAPI.gallery - pk: 669 + pk: 48 fields: save_id: gallery47 name: ex10_8 description: 'Engineering Circuit Analysis (Author: W. Hayt, J. Kemmerly And S. Durbin), 10) Sinusoidal Steady state Analysis, 10.8) Nodal and Mesh analysis' - save_time: 2025-01-23 16:04:57+00:00 + save_time: 2025-03-17 15:49:08+00:00 book: 215 data_dump: media: gallery93.png + script_dump: '' - model: saveAPI.gallery - pk: 716 + pk: 95 fields: save_id: gallery94 name: ex8_3 description: 'Engineering Circuit Analysis (Author: W. Hayt, J. Kemmerly And S. Durbin), 8) Basic RL and RC circuits, 8.3) The Source free RC Circuit' - save_time: 2025-01-23 16:04:57+00:00 + save_time: 2025-03-17 15:49:08+00:00 book: 215 data_dump: media: gallery96.png + script_dump: '' - model: saveAPI.gallery - pk: 719 + pk: 98 fields: save_id: gallery97 name: ex9_2 description: 'Engineering Circuit Analysis (Author: W. Hayt, J. Kemmerly And S. Durbin), 9) The RLC Circuit, 9.2) The Overdamped parallel circuit' - save_time: 2025-01-23 16:04:57+00:00 + save_time: 2025-03-17 15:49:08+00:00 book: 215 data_dump: media: gallery98.png + script_dump: '' - model: saveAPI.gallery - pk: 721 + pk: 100 fields: save_id: gallery99 name: ex9_6 description: 'Engineering Circuit Analysis (Author: W. Hayt, J. Kemmerly And S. Durbin), 9) The RLC Circuit, 9.6) The Underdamped parallel RLC circuit' - save_time: 2025-01-23 16:04:57+00:00 + save_time: 2025-03-17 15:49:08+00:00 book: 215 data_dump: media: gallery103.png + script_dump: ' + + // ELECTRICAL MACHINES + + // R.K.Srivastava + + // First Impression 2011 + + // CENGAGE LEARNING INDIA PVT. LTD + + // CHAPTER : 6 : SYNCHRONOUS MACHINES + + + // EXAMPLE : 6.23 + + + // GIVEN DATA + + + p = 4; // Number of the poles in the Alternator + + f = 50; // Frequency in Hertz + + pkw = 500; // Alternator delivering load in kilo-watts + + pkwinc = 1000; // Generator increases its share of the common + elictrical in kilo-watts + + Kj = 1.5; // Inertia acceleration coefficient for the + combined prime mover-alternator in N-m/elec deg/second square + + Kd = 12; // Damping torque coefficient in N-m/elec deg/second + + delta1 = 9; // Initial value of the Power angle in degree + + + + // CALCULATIONS + + + delta2 = (pkwinc/pkw)*delta1; // Final value (maximum + value) of the Power angle in degree (considering Linear variation) + + ws = (4*%pi*f)/p; // Rotational speed + in Radians per second + + Ts = (pkw*1000)/ws; // Synchornizing + torque at 500kW in N-m + + Ks = Ts/delta1; // Synchornizing + torque cofficient at 500kW in N-m/elec-deg + + // Laplace transform of the swing Equation can be written as :- s^2 + ((Kd/Kj)*s) + + (Ks/Kj) = 0, s^2 + (12/1.5)s + (353.86/1.5) = 0 and compring with the standard + equation s^2 + s(2*zeta*Wn) + Wn^2 = 0 we get:- mentined below (refer page + no. 454 and 455) + + Wn = sqrt(Ks/Kj); // Natural frequency + of oscillations in Radians per second + + fn = Wn/(2*%pi); // Frequency of + natural oscillations in Hertz + + zeta = (1*Kd)/(2*Wn*Kj); // Damping ratio + + Wd = Wn*(sqrt(1-zeta^2)); // Frequency of + damped oscillations in radians/s + + fd = Wd/(2*%pi); // Frequency of + damped oscillations in Hertz + + ts = 5/(zeta*Wn); // Settling time + in second + + deltamax = delta1 + 1.42*(delta2-delta1); // The maximum overshoot + for damping ratio of 0.2604 is about 42% the maximum appoximate value of the + overshoot in terms of 1% tolearance band in Electrical degree + + + + // DISPLAY RESULTS + + + disp("EXAMPLE : 6.23: SOLUTION :-"); + + printf("\n (a.1) Final value (maximum value) of the Power angle (considering + Linear variation), delta2 = %.f degree \n",delta2) + + printf("\n (a.2) Natural frequency of oscillations, Ns = %.2f radians/s \n",Wn) + + printf("\n (a.3) Damping ratio, zeta = %.4f \n",zeta) + + printf("\n (a.4) Frequency of damped oscillations, Wd = %.2f radians/s \n",Wd) + + printf("\n (a.5) Settling time, ts = %.2f seconds \n",ts) + + printf("\n (b) The maximum overshoot for damping ratio of 0.2604 is about + 42 percent the maximum appoximate value of the overshoot in terms of 1 percent + tolearance band is, deltamax = %.2f degree \n",deltamax) + + printf("\n\n FOR CASE (C) CANNOT BE DO IT IN THIS BECAUSE AS IT REQUIRES MATLAB + SIMULINK \n")' - model: saveAPI.gallery - pk: 726 + pk: 105 fields: save_id: gallery104 name: eg12_2 description: 'Electrical Engineering Fundamentals (Author: V. Del Toro), 12) Simplifying - logical functions, 12.2) Prove the given theorem' - save_time: 2025-01-23 16:04:57+00:00 + logical functions, 12.2) Prove the given theoram' + save_time: 2025-03-17 15:49:08+00:00 book: 293 data_dump: ' media: gallery139.png + script_dump: '//control systems by Nagoor Kani A + + //Edition 3 + + //Year of publication 2015 + + //Scilab version 6.0.0 + + //operating systems windows 10 + + // Example 3.6 + + + s=poly(0,''s'') + + // the input is unit step signal + + h=syslin(''c'',16/(s^2+4*s+16))//the value of k is 0.2 + + zeta=0.5//given damping ratio + + disp(h,''the closed loop transfer function'') + + //standard form od second order system is w^2/s^2+2*zeta*w*s+w^2 + + //compaing h with the standard form + + w=4//natural frequency of oscillation + + disp(w,''natural frequency of oscillation in rad/sec'') + + k=(2*zeta*w-(0.8))/16 + + disp(k,''the value of k is'') + + mp=exp((-zeta*%pi)/sqrt(1-(zeta)^2))*100//percentage peak overshoot + + disp(mp,''percentage peak overshoot in percentage'') + + tp=%pi/(w*sqrt(1-(zeta)^2)) + + disp(tp,''peak time in seconds'') + + //constructing a right angle triangle with zeta and sqrt(1-zeta^2) + + theta=atan(0.866/0.5)//(1-zeta^2)/zeta + + disp(theta,''the value of theta is'') + + tr=(%pi- theta)/(w*sqrt(1-(zeta)^2)) + + disp(tr,''the rise time in seconds'') + + t=1/(zeta*w)//time constant + + ts1=3*t//settling time for 5% error + + disp(ts1,''settling time for 5% error in seconds'') + + ts2=4*t//settling time for 2% error + + disp(ts2,''settling time for 2% error in seconds'')' - model: saveAPI.gallery - pk: 762 + pk: 141 fields: save_id: gallery140 name: Ex3_7 description: 'Control Systems (Author: A Nagoor Kani), 3) TIME RESPONSE ANALYSIS, 3.7) RESPONSE OF THE SYSTEM' - save_time: 2025-01-23 16:04:57+00:00 + save_time: 2025-03-17 15:49:09+00:00 book: 3885 data_dump: