From 9dae2503fef590a973bd2f949de1bf2b9132ea81 Mon Sep 17 00:00:00 2001
From: Sunil Shetye
Date: Mon, 17 Mar 2025 15:51:20 +0530
Subject: add script_dump column from xcos_on_cloud
---
blocks/saveAPI/fixtures/saveAPI.yaml | 24595 ++++++++++++++++++++++++++++++++-
1 file changed, 24284 insertions(+), 311 deletions(-)
diff --git a/blocks/saveAPI/fixtures/saveAPI.yaml b/blocks/saveAPI/fixtures/saveAPI.yaml
index 3a0e7e64..cacb8790 100644
--- a/blocks/saveAPI/fixtures/saveAPI.yaml
+++ b/blocks/saveAPI/fixtures/saveAPI.yaml
@@ -69,13 +69,13 @@
fields:
category_name: Power Systems
- model: saveAPI.gallery
- pk: 622
+ pk: 1
fields:
save_id: gallery0
name: ch5_1
description: 'Electric Circuits (Author: M. Navhi And J. A. Edminister), 5) Analysis
Methods, 5.1) The branch current method'
- save_time: 2025-01-23 16:04:57+00:00
+ save_time: 2025-03-17 15:49:07+00:00
book: 154
data_dump:
media: gallery12.png
+ script_dump: ''
- model: saveAPI.gallery
- pk: 635
+ pk: 14
fields:
save_id: gallery13
name: ch8_9
description: 'Electric Circuits (Author: M. Navhi And J. A. Edminister), 8) First
order Circuits, 8.9) Transitions at Switching Time'
- save_time: 2025-01-23 16:04:57+00:00
+ save_time: 2025-03-17 15:49:07+00:00
book: 154
data_dump:
media: gallery18.png
+ script_dump: '// Find voltage across diode
+
+ // Basic Electronics
+
+ // By Debashis De
+
+ // First Edition, 2010
+
+ // Dorling Kindersley Pvt. Ltd. India
+
+ // Example 3-28 in page 180
+
+
+ // Given data
+
+ I=0.1075; // Cirremt across diode in A
+
+ Rd=1; // Internal resistance of diode in ohm
+
+
+ // Calculation
+
+ Vd=I*Rd;
+
+ printf("Voltage across diode = %0.4f V",Vd);
+
+
+ // Result
+
+ // Voltage across diode = 0.1075 V'
- model: saveAPI.gallery
- pk: 641
+ pk: 20
fields:
save_id: gallery19
name: example3_30
description: 'Basic Electronics (Author: D. De), 3) Diode Circuits, 3.30) Calculate
R Il max'
- save_time: 2025-01-23 16:04:57+00:00
+ save_time: 2025-03-17 15:49:07+00:00
book: 181
data_dump:
media: gallery20.png
+ script_dump: '// Calculate the dc load current
+
+ // Basic Electronics
+
+ // By Debashis De
+
+ // First Edition, 2010
+
+ // Dorling Kindersley Pvt. Ltd. India
+
+ // Example 3-8 in page 157
+
+
+ // Given data
+
+ Vm=280; // Supply voltage in V
+
+ Rl=2000; // Load resistance in ohms
+
+ Rf=500; // Internal resistance of the diodes in ohms
+
+
+ // Calculation
+
+ Idc=(2*Vm)/(%pi*2500);
+
+ Idc_t=Idc/2;
+
+ printf("(a)I_dc = %0.2e A\n(b)I_dc(tube) = %0.2e A\n",Idc,Idc_t);
+
+ printf("(c)Voltage across conducting diode is sinusoidal with a peak value 0.2
+ Vm\n");
+
+ V_rms=0.905*(280*sqrt(2));
+
+ Pdc=Idc^2*Rl;
+
+ R=(Rf/Rl)*100;
+
+ printf("Rms voltage V_rms = %0.0f V\n",V_rms);
+
+ printf("(d)DC output power = %0.1f W\n",Pdc);
+
+ printf("(e)Percentage regulation = %0.0f percent",R);
+
+
+ // Result
+
+ // (a) Idc = 71 mA,
+
+ // (b) Idc_tube = 35.7 mA,
+
+ // (c) V_rms = 358 V,
+
+ // (d) P_dc = 10.167W,
+
+ // (e) Percentage regulation = 25%'
- model: saveAPI.gallery
- pk: 643
+ pk: 22
fields:
save_id: gallery21
name: Ex10_1
description: 'Digital Control (Author: K. M. Moudgalya), 10) Special Cases of
Pole Placement Control, 10.1) Effect of delay in control performance'
- save_time: 2025-01-23 16:04:57+00:00
+ save_time: 2025-03-17 15:49:08+00:00
book: 2048
data_dump:
media: gallery46.png
+ script_dump: ''
- model: saveAPI.gallery
- pk: 669
+ pk: 48
fields:
save_id: gallery47
name: ex10_8
description: 'Engineering Circuit Analysis (Author: W. Hayt, J. Kemmerly And S.
Durbin), 10) Sinusoidal Steady state Analysis, 10.8) Nodal and Mesh analysis'
- save_time: 2025-01-23 16:04:57+00:00
+ save_time: 2025-03-17 15:49:08+00:00
book: 215
data_dump:
media: gallery93.png
+ script_dump: ''
- model: saveAPI.gallery
- pk: 716
+ pk: 95
fields:
save_id: gallery94
name: ex8_3
description: 'Engineering Circuit Analysis (Author: W. Hayt, J. Kemmerly And S.
Durbin), 8) Basic RL and RC circuits, 8.3) The Source free RC Circuit'
- save_time: 2025-01-23 16:04:57+00:00
+ save_time: 2025-03-17 15:49:08+00:00
book: 215
data_dump:
media: gallery96.png
+ script_dump: ''
- model: saveAPI.gallery
- pk: 719
+ pk: 98
fields:
save_id: gallery97
name: ex9_2
description: 'Engineering Circuit Analysis (Author: W. Hayt, J. Kemmerly And S.
Durbin), 9) The RLC Circuit, 9.2) The Overdamped parallel circuit'
- save_time: 2025-01-23 16:04:57+00:00
+ save_time: 2025-03-17 15:49:08+00:00
book: 215
data_dump:
media: gallery98.png
+ script_dump: ''
- model: saveAPI.gallery
- pk: 721
+ pk: 100
fields:
save_id: gallery99
name: ex9_6
description: 'Engineering Circuit Analysis (Author: W. Hayt, J. Kemmerly And S.
Durbin), 9) The RLC Circuit, 9.6) The Underdamped parallel RLC circuit'
- save_time: 2025-01-23 16:04:57+00:00
+ save_time: 2025-03-17 15:49:08+00:00
book: 215
data_dump:
media: gallery103.png
+ script_dump: '
+
+ // ELECTRICAL MACHINES
+
+ // R.K.Srivastava
+
+ // First Impression 2011
+
+ // CENGAGE LEARNING INDIA PVT. LTD
+
+ // CHAPTER : 6 : SYNCHRONOUS MACHINES
+
+
+ // EXAMPLE : 6.23
+
+
+ // GIVEN DATA
+
+
+ p = 4; // Number of the poles in the Alternator
+
+ f = 50; // Frequency in Hertz
+
+ pkw = 500; // Alternator delivering load in kilo-watts
+
+ pkwinc = 1000; // Generator increases its share of the common
+ elictrical in kilo-watts
+
+ Kj = 1.5; // Inertia acceleration coefficient for the
+ combined prime mover-alternator in N-m/elec deg/second square
+
+ Kd = 12; // Damping torque coefficient in N-m/elec deg/second
+
+ delta1 = 9; // Initial value of the Power angle in degree
+
+
+
+ // CALCULATIONS
+
+
+ delta2 = (pkwinc/pkw)*delta1; // Final value (maximum
+ value) of the Power angle in degree (considering Linear variation)
+
+ ws = (4*%pi*f)/p; // Rotational speed
+ in Radians per second
+
+ Ts = (pkw*1000)/ws; // Synchornizing
+ torque at 500kW in N-m
+
+ Ks = Ts/delta1; // Synchornizing
+ torque cofficient at 500kW in N-m/elec-deg
+
+ // Laplace transform of the swing Equation can be written as :- s^2 + ((Kd/Kj)*s)
+ + (Ks/Kj) = 0, s^2 + (12/1.5)s + (353.86/1.5) = 0 and compring with the standard
+ equation s^2 + s(2*zeta*Wn) + Wn^2 = 0 we get:- mentined below (refer page
+ no. 454 and 455)
+
+ Wn = sqrt(Ks/Kj); // Natural frequency
+ of oscillations in Radians per second
+
+ fn = Wn/(2*%pi); // Frequency of
+ natural oscillations in Hertz
+
+ zeta = (1*Kd)/(2*Wn*Kj); // Damping ratio
+
+ Wd = Wn*(sqrt(1-zeta^2)); // Frequency of
+ damped oscillations in radians/s
+
+ fd = Wd/(2*%pi); // Frequency of
+ damped oscillations in Hertz
+
+ ts = 5/(zeta*Wn); // Settling time
+ in second
+
+ deltamax = delta1 + 1.42*(delta2-delta1); // The maximum overshoot
+ for damping ratio of 0.2604 is about 42% the maximum appoximate value of the
+ overshoot in terms of 1% tolearance band in Electrical degree
+
+
+
+ // DISPLAY RESULTS
+
+
+ disp("EXAMPLE : 6.23: SOLUTION :-");
+
+ printf("\n (a.1) Final value (maximum value) of the Power angle (considering
+ Linear variation), delta2 = %.f degree \n",delta2)
+
+ printf("\n (a.2) Natural frequency of oscillations, Ns = %.2f radians/s \n",Wn)
+
+ printf("\n (a.3) Damping ratio, zeta = %.4f \n",zeta)
+
+ printf("\n (a.4) Frequency of damped oscillations, Wd = %.2f radians/s \n",Wd)
+
+ printf("\n (a.5) Settling time, ts = %.2f seconds \n",ts)
+
+ printf("\n (b) The maximum overshoot for damping ratio of 0.2604 is about
+ 42 percent the maximum appoximate value of the overshoot in terms of 1 percent
+ tolearance band is, deltamax = %.2f degree \n",deltamax)
+
+ printf("\n\n FOR CASE (C) CANNOT BE DO IT IN THIS BECAUSE AS IT REQUIRES MATLAB
+ SIMULINK \n")'
- model: saveAPI.gallery
- pk: 726
+ pk: 105
fields:
save_id: gallery104
name: eg12_2
description: 'Electrical Engineering Fundamentals (Author: V. Del Toro), 12) Simplifying
- logical functions, 12.2) Prove the given theorem'
- save_time: 2025-01-23 16:04:57+00:00
+ logical functions, 12.2) Prove the given theoram'
+ save_time: 2025-03-17 15:49:08+00:00
book: 293
data_dump: '
media: gallery139.png
+ script_dump: '//control systems by Nagoor Kani A
+
+ //Edition 3
+
+ //Year of publication 2015
+
+ //Scilab version 6.0.0
+
+ //operating systems windows 10
+
+ // Example 3.6
+
+
+ s=poly(0,''s'')
+
+ // the input is unit step signal
+
+ h=syslin(''c'',16/(s^2+4*s+16))//the value of k is 0.2
+
+ zeta=0.5//given damping ratio
+
+ disp(h,''the closed loop transfer function'')
+
+ //standard form od second order system is w^2/s^2+2*zeta*w*s+w^2
+
+ //compaing h with the standard form
+
+ w=4//natural frequency of oscillation
+
+ disp(w,''natural frequency of oscillation in rad/sec'')
+
+ k=(2*zeta*w-(0.8))/16
+
+ disp(k,''the value of k is'')
+
+ mp=exp((-zeta*%pi)/sqrt(1-(zeta)^2))*100//percentage peak overshoot
+
+ disp(mp,''percentage peak overshoot in percentage'')
+
+ tp=%pi/(w*sqrt(1-(zeta)^2))
+
+ disp(tp,''peak time in seconds'')
+
+ //constructing a right angle triangle with zeta and sqrt(1-zeta^2)
+
+ theta=atan(0.866/0.5)//(1-zeta^2)/zeta
+
+ disp(theta,''the value of theta is'')
+
+ tr=(%pi- theta)/(w*sqrt(1-(zeta)^2))
+
+ disp(tr,''the rise time in seconds'')
+
+ t=1/(zeta*w)//time constant
+
+ ts1=3*t//settling time for 5% error
+
+ disp(ts1,''settling time for 5% error in seconds'')
+
+ ts2=4*t//settling time for 2% error
+
+ disp(ts2,''settling time for 2% error in seconds'')'
- model: saveAPI.gallery
- pk: 762
+ pk: 141
fields:
save_id: gallery140
name: Ex3_7
description: 'Control Systems (Author: A Nagoor Kani), 3) TIME RESPONSE ANALYSIS,
3.7) RESPONSE OF THE SYSTEM'
- save_time: 2025-01-23 16:04:57+00:00
+ save_time: 2025-03-17 15:49:09+00:00
book: 3885
data_dump: