# -*- coding: utf-8 -*- # Copyright (c) 2012-2015 LOGILAB S.A. (Paris, FRANCE) # Copyright (c) 2013-2014 Google, Inc. # Copyright (c) 2014-2018 Claudiu Popa # Copyright (c) 2014 Eevee (Alex Munroe) # Copyright (c) 2015-2016 Ceridwen # Copyright (c) 2015 Dmitry Pribysh # Copyright (c) 2015 David Shea # Copyright (c) 2015 Philip Lorenz # Copyright (c) 2016 Jakub Wilk # Copyright (c) 2016 Mateusz Bysiek # Copyright (c) 2017 Hugo # Copyright (c) 2017 Ɓukasz Rogalski # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER """Astroid hooks for the Python standard library.""" import functools import keyword from textwrap import dedent from astroid import MANAGER, UseInferenceDefault, inference_tip, InferenceError from astroid import arguments from astroid import exceptions from astroid import nodes from astroid.builder import AstroidBuilder, extract_node from astroid import util TYPING_NAMEDTUPLE_BASENAMES = {"NamedTuple", "typing.NamedTuple"} ENUM_BASE_NAMES = { "Enum", "IntEnum", "enum.Enum", "enum.IntEnum", "IntFlag", "enum.IntFlag", } def _infer_first(node, context): if node is util.Uninferable: raise UseInferenceDefault try: value = next(node.infer(context=context)) if value is util.Uninferable: raise UseInferenceDefault() else: return value except StopIteration: raise InferenceError() def _find_func_form_arguments(node, context): def _extract_namedtuple_arg_or_keyword(position, key_name=None): if len(args) > position: return _infer_first(args[position], context) if key_name and key_name in found_keywords: return _infer_first(found_keywords[key_name], context) args = node.args keywords = node.keywords found_keywords = ( {keyword.arg: keyword.value for keyword in keywords} if keywords else {} ) name = _extract_namedtuple_arg_or_keyword(position=0, key_name="typename") names = _extract_namedtuple_arg_or_keyword(position=1, key_name="field_names") if name and names: return name.value, names raise UseInferenceDefault() def infer_func_form(node, base_type, context=None, enum=False): """Specific inference function for namedtuple or Python 3 enum. """ # node is a Call node, class name as first argument and generated class # attributes as second argument # namedtuple or enums list of attributes can be a list of strings or a # whitespace-separate string try: name, names = _find_func_form_arguments(node, context) try: attributes = names.value.replace(",", " ").split() except AttributeError: if not enum: attributes = [ _infer_first(const, context).value for const in names.elts ] else: # Enums supports either iterator of (name, value) pairs # or mappings. if hasattr(names, "items") and isinstance(names.items, list): attributes = [ _infer_first(const[0], context).value for const in names.items if isinstance(const[0], nodes.Const) ] elif hasattr(names, "elts"): # Enums can support either ["a", "b", "c"] # or [("a", 1), ("b", 2), ...], but they can't # be mixed. if all(isinstance(const, nodes.Tuple) for const in names.elts): attributes = [ _infer_first(const.elts[0], context).value for const in names.elts if isinstance(const, nodes.Tuple) ] else: attributes = [ _infer_first(const, context).value for const in names.elts ] else: raise AttributeError if not attributes: raise AttributeError except (AttributeError, exceptions.InferenceError): raise UseInferenceDefault() # If we can't infer the name of the class, don't crash, up to this point # we know it is a namedtuple anyway. name = name or "Uninferable" # we want to return a Class node instance with proper attributes set class_node = nodes.ClassDef(name, "docstring") class_node.parent = node.parent # set base class=tuple class_node.bases.append(base_type) # XXX add __init__(*attributes) method for attr in attributes: fake_node = nodes.EmptyNode() fake_node.parent = class_node fake_node.attrname = attr class_node.instance_attrs[attr] = [fake_node] return class_node, name, attributes def _has_namedtuple_base(node): """Predicate for class inference tip :type node: ClassDef :rtype: bool """ return set(node.basenames) & TYPING_NAMEDTUPLE_BASENAMES def _looks_like(node, name): func = node.func if isinstance(func, nodes.Attribute): return func.attrname == name if isinstance(func, nodes.Name): return func.name == name return False _looks_like_namedtuple = functools.partial(_looks_like, name="namedtuple") _looks_like_enum = functools.partial(_looks_like, name="Enum") _looks_like_typing_namedtuple = functools.partial(_looks_like, name="NamedTuple") def infer_named_tuple(node, context=None): """Specific inference function for namedtuple Call node""" tuple_base_name = nodes.Name(name="tuple", parent=node.root()) class_node, name, attributes = infer_func_form( node, tuple_base_name, context=context ) call_site = arguments.CallSite.from_call(node) func = next(extract_node("import collections; collections.namedtuple").infer()) try: rename = next(call_site.infer_argument(func, "rename", context)).bool_value() except InferenceError: rename = False if rename: attributes = _get_renamed_namedtuple_attributes(attributes) replace_args = ", ".join("{arg}=None".format(arg=arg) for arg in attributes) field_def = ( " {name} = property(lambda self: self[{index:d}], " "doc='Alias for field number {index:d}')" ) field_defs = "\n".join( field_def.format(name=name, index=index) for index, name in enumerate(attributes) ) fake = AstroidBuilder(MANAGER).string_build( """ class %(name)s(tuple): __slots__ = () _fields = %(fields)r def _asdict(self): return self.__dict__ @classmethod def _make(cls, iterable, new=tuple.__new__, len=len): return new(cls, iterable) def _replace(self, %(replace_args)s): return self def __getnewargs__(self): return tuple(self) %(field_defs)s """ % { "name": name, "fields": attributes, "field_defs": field_defs, "replace_args": replace_args, } ) class_node.locals["_asdict"] = fake.body[0].locals["_asdict"] class_node.locals["_make"] = fake.body[0].locals["_make"] class_node.locals["_replace"] = fake.body[0].locals["_replace"] class_node.locals["_fields"] = fake.body[0].locals["_fields"] for attr in attributes: class_node.locals[attr] = fake.body[0].locals[attr] # we use UseInferenceDefault, we can't be a generator so return an iterator return iter([class_node]) def _get_renamed_namedtuple_attributes(field_names): names = list(field_names) seen = set() for i, name in enumerate(field_names): if ( not all(c.isalnum() or c == "_" for c in name) or keyword.iskeyword(name) or not name or name[0].isdigit() or name.startswith("_") or name in seen ): names[i] = "_%d" % i seen.add(name) return tuple(names) def infer_enum(node, context=None): """ Specific inference function for enum Call node. """ enum_meta = extract_node( """ class EnumMeta(object): 'docstring' def __call__(self, node): class EnumAttribute(object): name = '' value = 0 return EnumAttribute() def __iter__(self): class EnumAttribute(object): name = '' value = 0 return [EnumAttribute()] def __reversed__(self): class EnumAttribute(object): name = '' value = 0 return (EnumAttribute, ) def __next__(self): return next(iter(self)) def __getitem__(self, attr): class Value(object): @property def name(self): return '' @property def value(self): return attr return Value() __members__ = [''] """ ) class_node = infer_func_form(node, enum_meta, context=context, enum=True)[0] return iter([class_node.instantiate_class()]) INT_FLAG_ADDITION_METHODS = """ def __or__(self, other): return {name}(self.value | other.value) def __and__(self, other): return {name}(self.value & other.value) def __xor__(self, other): return {name}(self.value ^ other.value) def __add__(self, other): return {name}(self.value + other.value) def __div__(self, other): return {name}(self.value / other.value) def __invert__(self): return {name}(~self.value) def __mul__(self, other): return {name}(self.value * other.value) """ def infer_enum_class(node): """ Specific inference for enums. """ for basename in node.basenames: # TODO: doesn't handle subclasses yet. This implementation # is a hack to support enums. if basename not in ENUM_BASE_NAMES: continue if node.root().name == "enum": # Skip if the class is directly from enum module. break for local, values in node.locals.items(): if any(not isinstance(value, nodes.AssignName) for value in values): continue targets = [] stmt = values[0].statement() if isinstance(stmt, nodes.Assign): if isinstance(stmt.targets[0], nodes.Tuple): targets = stmt.targets[0].itered() else: targets = stmt.targets elif isinstance(stmt, nodes.AnnAssign): targets = [stmt.target] inferred_return_value = None if isinstance(stmt, nodes.Assign): if isinstance(stmt.value, nodes.Const): if isinstance(stmt.value.value, str): inferred_return_value = repr(stmt.value.value) else: inferred_return_value = stmt.value.value else: inferred_return_value = stmt.value.as_string() new_targets = [] for target in targets: # Replace all the assignments with our mocked class. classdef = dedent( """ class {name}({types}): @property def value(self): return {return_value} @property def name(self): return "{name}" """.format( name=target.name, types=", ".join(node.basenames), return_value=inferred_return_value, ) ) if "IntFlag" in basename: # Alright, we need to add some additional methods. # Unfortunately we still can't infer the resulting objects as # Enum members, but once we'll be able to do that, the following # should result in some nice symbolic execution classdef += INT_FLAG_ADDITION_METHODS.format(name=target.name) fake = AstroidBuilder(MANAGER).string_build(classdef)[target.name] fake.parent = target.parent for method in node.mymethods(): fake.locals[method.name] = [method] new_targets.append(fake.instantiate_class()) node.locals[local] = new_targets break return node def infer_typing_namedtuple_class(class_node, context=None): """Infer a subclass of typing.NamedTuple""" # Check if it has the corresponding bases annassigns_fields = [ annassign.target.name for annassign in class_node.body if isinstance(annassign, nodes.AnnAssign) ] code = dedent( """ from collections import namedtuple namedtuple({typename!r}, {fields!r}) """ ).format(typename=class_node.name, fields=",".join(annassigns_fields)) node = extract_node(code) generated_class_node = next(infer_named_tuple(node, context)) for method in class_node.mymethods(): generated_class_node.locals[method.name] = [method] for assign in class_node.body: if not isinstance(assign, nodes.Assign): continue for target in assign.targets: attr = target.name generated_class_node.locals[attr] = class_node.locals[attr] return iter((generated_class_node,)) def infer_typing_namedtuple(node, context=None): """Infer a typing.NamedTuple(...) call.""" # This is essentially a namedtuple with different arguments # so we extract the args and infer a named tuple. try: func = next(node.func.infer()) except InferenceError: raise UseInferenceDefault if func.qname() != "typing.NamedTuple": raise UseInferenceDefault if len(node.args) != 2: raise UseInferenceDefault if not isinstance(node.args[1], (nodes.List, nodes.Tuple)): raise UseInferenceDefault names = [] for elt in node.args[1].elts: if not isinstance(elt, (nodes.List, nodes.Tuple)): raise UseInferenceDefault if len(elt.elts) != 2: raise UseInferenceDefault names.append(elt.elts[0].as_string()) typename = node.args[0].as_string() if names: field_names = "({},)".format(",".join(names)) else: field_names = "''" node = extract_node( "namedtuple({typename}, {fields})".format(typename=typename, fields=field_names) ) return infer_named_tuple(node, context) MANAGER.register_transform( nodes.Call, inference_tip(infer_named_tuple), _looks_like_namedtuple ) MANAGER.register_transform(nodes.Call, inference_tip(infer_enum), _looks_like_enum) MANAGER.register_transform( nodes.ClassDef, infer_enum_class, predicate=lambda cls: any( basename for basename in cls.basenames if basename in ENUM_BASE_NAMES ), ) MANAGER.register_transform( nodes.ClassDef, inference_tip(infer_typing_namedtuple_class), _has_namedtuple_base ) MANAGER.register_transform( nodes.Call, inference_tip(infer_typing_namedtuple), _looks_like_typing_namedtuple )