# Copyright (c) 2014-2018 Claudiu Popa # Copyright (c) 2014-2015 LOGILAB S.A. (Paris, FRANCE) # Copyright (c) 2015-2016 Ceridwen # Copyright (c) 2015 Rene Zhang # Copyright (c) 2018 Bryce Guinta # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER """Astroid hooks for various builtins.""" from functools import partial from textwrap import dedent import six from astroid import ( MANAGER, UseInferenceDefault, AttributeInferenceError, inference_tip, InferenceError, NameInferenceError, AstroidTypeError, MroError, ) from astroid import arguments from astroid.builder import AstroidBuilder from astroid import helpers from astroid import nodes from astroid import objects from astroid import scoped_nodes from astroid import util OBJECT_DUNDER_NEW = "object.__new__" def _extend_str(class_node, rvalue): """function to extend builtin str/unicode class""" code = dedent( """ class whatever(object): def join(self, iterable): return {rvalue} def replace(self, old, new, count=None): return {rvalue} def format(self, *args, **kwargs): return {rvalue} def encode(self, encoding='ascii', errors=None): return '' def decode(self, encoding='ascii', errors=None): return u'' def capitalize(self): return {rvalue} def title(self): return {rvalue} def lower(self): return {rvalue} def upper(self): return {rvalue} def swapcase(self): return {rvalue} def index(self, sub, start=None, end=None): return 0 def find(self, sub, start=None, end=None): return 0 def count(self, sub, start=None, end=None): return 0 def strip(self, chars=None): return {rvalue} def lstrip(self, chars=None): return {rvalue} def rstrip(self, chars=None): return {rvalue} def rjust(self, width, fillchar=None): return {rvalue} def center(self, width, fillchar=None): return {rvalue} def ljust(self, width, fillchar=None): return {rvalue} """ ) code = code.format(rvalue=rvalue) fake = AstroidBuilder(MANAGER).string_build(code)["whatever"] for method in fake.mymethods(): method.parent = class_node method.lineno = None method.col_offset = None if "__class__" in method.locals: method.locals["__class__"] = [class_node] class_node.locals[method.name] = [method] method.parent = class_node def _extend_builtins(class_transforms): builtin_ast = MANAGER.builtins_module for class_name, transform in class_transforms.items(): transform(builtin_ast[class_name]) _extend_builtins( { "bytes": partial(_extend_str, rvalue="b''"), "str": partial(_extend_str, rvalue="''"), } ) def _builtin_filter_predicate(node, builtin_name): if isinstance(node.func, nodes.Name) and node.func.name == builtin_name: return True if isinstance(node.func, nodes.Attribute): return ( node.func.attrname == "fromkeys" and isinstance(node.func.expr, nodes.Name) and node.func.expr.name == "dict" ) return False def register_builtin_transform(transform, builtin_name): """Register a new transform function for the given *builtin_name*. The transform function must accept two parameters, a node and an optional context. """ def _transform_wrapper(node, context=None): result = transform(node, context=context) if result: if not result.parent: # Let the transformation function determine # the parent for its result. Otherwise, # we set it to be the node we transformed from. result.parent = node if result.lineno is None: result.lineno = node.lineno if result.col_offset is None: result.col_offset = node.col_offset return iter([result]) MANAGER.register_transform( nodes.Call, inference_tip(_transform_wrapper), partial(_builtin_filter_predicate, builtin_name=builtin_name), ) def _container_generic_inference(node, context, node_type, transform): args = node.args if not args: return node_type() if len(node.args) > 1: raise UseInferenceDefault() arg, = args transformed = transform(arg) if not transformed: try: inferred = next(arg.infer(context=context)) except (InferenceError, StopIteration): raise UseInferenceDefault() if inferred is util.Uninferable: raise UseInferenceDefault() transformed = transform(inferred) if not transformed or transformed is util.Uninferable: raise UseInferenceDefault() return transformed def _container_generic_transform(arg, klass, iterables, build_elts): if isinstance(arg, klass): return arg elif isinstance(arg, iterables): if all(isinstance(elt, nodes.Const) for elt in arg.elts): elts = [elt.value for elt in arg.elts] else: # TODO: Does not handle deduplication for sets. elts = filter(None, map(helpers.safe_infer, arg.elts)) elif isinstance(arg, nodes.Dict): # Dicts need to have consts as strings already. if not all(isinstance(elt[0], nodes.Const) for elt in arg.items): raise UseInferenceDefault() elts = [item[0].value for item in arg.items] elif isinstance(arg, nodes.Const) and isinstance( arg.value, (six.string_types, six.binary_type) ): elts = arg.value else: return return klass.from_elements(elts=build_elts(elts)) def _infer_builtin_container( node, context, klass=None, iterables=None, build_elts=None ): transform_func = partial( _container_generic_transform, klass=klass, iterables=iterables, build_elts=build_elts, ) return _container_generic_inference(node, context, klass, transform_func) # pylint: disable=invalid-name infer_tuple = partial( _infer_builtin_container, klass=nodes.Tuple, iterables=( nodes.List, nodes.Set, objects.FrozenSet, objects.DictItems, objects.DictKeys, objects.DictValues, ), build_elts=tuple, ) infer_list = partial( _infer_builtin_container, klass=nodes.List, iterables=( nodes.Tuple, nodes.Set, objects.FrozenSet, objects.DictItems, objects.DictKeys, objects.DictValues, ), build_elts=list, ) infer_set = partial( _infer_builtin_container, klass=nodes.Set, iterables=(nodes.List, nodes.Tuple, objects.FrozenSet, objects.DictKeys), build_elts=set, ) infer_frozenset = partial( _infer_builtin_container, klass=objects.FrozenSet, iterables=(nodes.List, nodes.Tuple, nodes.Set, objects.FrozenSet, objects.DictKeys), build_elts=frozenset, ) def _get_elts(arg, context): is_iterable = lambda n: isinstance(n, (nodes.List, nodes.Tuple, nodes.Set)) try: inferred = next(arg.infer(context)) except (InferenceError, NameInferenceError): raise UseInferenceDefault() if isinstance(inferred, nodes.Dict): items = inferred.items elif is_iterable(inferred): items = [] for elt in inferred.elts: # If an item is not a pair of two items, # then fallback to the default inference. # Also, take in consideration only hashable items, # tuples and consts. We are choosing Names as well. if not is_iterable(elt): raise UseInferenceDefault() if len(elt.elts) != 2: raise UseInferenceDefault() if not isinstance(elt.elts[0], (nodes.Tuple, nodes.Const, nodes.Name)): raise UseInferenceDefault() items.append(tuple(elt.elts)) else: raise UseInferenceDefault() return items def infer_dict(node, context=None): """Try to infer a dict call to a Dict node. The function treats the following cases: * dict() * dict(mapping) * dict(iterable) * dict(iterable, **kwargs) * dict(mapping, **kwargs) * dict(**kwargs) If a case can't be inferred, we'll fallback to default inference. """ call = arguments.CallSite.from_call(node) if call.has_invalid_arguments() or call.has_invalid_keywords(): raise UseInferenceDefault args = call.positional_arguments kwargs = list(call.keyword_arguments.items()) if not args and not kwargs: # dict() return nodes.Dict() elif kwargs and not args: # dict(a=1, b=2, c=4) items = [(nodes.Const(key), value) for key, value in kwargs] elif len(args) == 1 and kwargs: # dict(some_iterable, b=2, c=4) elts = _get_elts(args[0], context) keys = [(nodes.Const(key), value) for key, value in kwargs] items = elts + keys elif len(args) == 1: items = _get_elts(args[0], context) else: raise UseInferenceDefault() value = nodes.Dict( col_offset=node.col_offset, lineno=node.lineno, parent=node.parent ) value.postinit(items) return value def infer_super(node, context=None): """Understand super calls. There are some restrictions for what can be understood: * unbounded super (one argument form) is not understood. * if the super call is not inside a function (classmethod or method), then the default inference will be used. * if the super arguments can't be inferred, the default inference will be used. """ if len(node.args) == 1: # Ignore unbounded super. raise UseInferenceDefault scope = node.scope() if not isinstance(scope, nodes.FunctionDef): # Ignore non-method uses of super. raise UseInferenceDefault if scope.type not in ("classmethod", "method"): # Not interested in staticmethods. raise UseInferenceDefault cls = scoped_nodes.get_wrapping_class(scope) if not len(node.args): mro_pointer = cls # In we are in a classmethod, the interpreter will fill # automatically the class as the second argument, not an instance. if scope.type == "classmethod": mro_type = cls else: mro_type = cls.instantiate_class() else: try: mro_pointer = next(node.args[0].infer(context=context)) except InferenceError: raise UseInferenceDefault try: mro_type = next(node.args[1].infer(context=context)) except InferenceError: raise UseInferenceDefault if mro_pointer is util.Uninferable or mro_type is util.Uninferable: # No way we could understand this. raise UseInferenceDefault super_obj = objects.Super( mro_pointer=mro_pointer, mro_type=mro_type, self_class=cls, scope=scope ) super_obj.parent = node return super_obj def _infer_getattr_args(node, context): if len(node.args) not in (2, 3): # Not a valid getattr call. raise UseInferenceDefault try: obj = next(node.args[0].infer(context=context)) attr = next(node.args[1].infer(context=context)) except InferenceError: raise UseInferenceDefault if obj is util.Uninferable or attr is util.Uninferable: # If one of the arguments is something we can't infer, # then also make the result of the getattr call something # which is unknown. return util.Uninferable, util.Uninferable is_string = isinstance(attr, nodes.Const) and isinstance( attr.value, six.string_types ) if not is_string: raise UseInferenceDefault return obj, attr.value def infer_getattr(node, context=None): """Understand getattr calls If one of the arguments is an Uninferable object, then the result will be an Uninferable object. Otherwise, the normal attribute lookup will be done. """ obj, attr = _infer_getattr_args(node, context) if ( obj is util.Uninferable or attr is util.Uninferable or not hasattr(obj, "igetattr") ): return util.Uninferable try: return next(obj.igetattr(attr, context=context)) except (StopIteration, InferenceError, AttributeInferenceError): if len(node.args) == 3: # Try to infer the default and return it instead. try: return next(node.args[2].infer(context=context)) except InferenceError: raise UseInferenceDefault raise UseInferenceDefault def infer_hasattr(node, context=None): """Understand hasattr calls This always guarantees three possible outcomes for calling hasattr: Const(False) when we are sure that the object doesn't have the intended attribute, Const(True) when we know that the object has the attribute and Uninferable when we are unsure of the outcome of the function call. """ try: obj, attr = _infer_getattr_args(node, context) if ( obj is util.Uninferable or attr is util.Uninferable or not hasattr(obj, "getattr") ): return util.Uninferable obj.getattr(attr, context=context) except UseInferenceDefault: # Can't infer something from this function call. return util.Uninferable except AttributeInferenceError: # Doesn't have it. return nodes.Const(False) return nodes.Const(True) def infer_callable(node, context=None): """Understand callable calls This follows Python's semantics, where an object is callable if it provides an attribute __call__, even though that attribute is something which can't be called. """ if len(node.args) != 1: # Invalid callable call. raise UseInferenceDefault argument = node.args[0] try: inferred = next(argument.infer(context=context)) except InferenceError: return util.Uninferable if inferred is util.Uninferable: return util.Uninferable return nodes.Const(inferred.callable()) def infer_bool(node, context=None): """Understand bool calls.""" if len(node.args) > 1: # Invalid bool call. raise UseInferenceDefault if not node.args: return nodes.Const(False) argument = node.args[0] try: inferred = next(argument.infer(context=context)) except InferenceError: return util.Uninferable if inferred is util.Uninferable: return util.Uninferable bool_value = inferred.bool_value() if bool_value is util.Uninferable: return util.Uninferable return nodes.Const(bool_value) def infer_type(node, context=None): """Understand the one-argument form of *type*.""" if len(node.args) != 1: raise UseInferenceDefault return helpers.object_type(node.args[0], context) def infer_slice(node, context=None): """Understand `slice` calls.""" args = node.args if not 0 < len(args) <= 3: raise UseInferenceDefault infer_func = partial(helpers.safe_infer, context=context) args = [infer_func(arg) for arg in args] for arg in args: if not arg or arg is util.Uninferable: raise UseInferenceDefault if not isinstance(arg, nodes.Const): raise UseInferenceDefault if not isinstance(arg.value, (type(None), int)): raise UseInferenceDefault if len(args) < 3: # Make sure we have 3 arguments. args.extend([None] * (3 - len(args))) slice_node = nodes.Slice( lineno=node.lineno, col_offset=node.col_offset, parent=node.parent ) slice_node.postinit(*args) return slice_node def _infer_object__new__decorator(node, context=None): # Instantiate class immediately # since that's what @object.__new__ does return iter((node.instantiate_class(),)) def _infer_object__new__decorator_check(node): """Predicate before inference_tip Check if the given ClassDef has an @object.__new__ decorator """ if not node.decorators: return False for decorator in node.decorators.nodes: if isinstance(decorator, nodes.Attribute): if decorator.as_string() == OBJECT_DUNDER_NEW: return True return False def infer_issubclass(callnode, context=None): """Infer issubclass() calls :param nodes.Call callnode: an `issubclass` call :param InferenceContext: the context for the inference :rtype nodes.Const: Boolean Const value of the `issubclass` call :raises UseInferenceDefault: If the node cannot be inferred """ call = arguments.CallSite.from_call(callnode) if call.keyword_arguments: # issubclass doesn't support keyword arguments raise UseInferenceDefault("TypeError: issubclass() takes no keyword arguments") if len(call.positional_arguments) != 2: raise UseInferenceDefault( "Expected two arguments, got {count}".format( count=len(call.positional_arguments) ) ) # The left hand argument is the obj to be checked obj_node, class_or_tuple_node = call.positional_arguments try: obj_type = next(obj_node.infer(context=context)) except InferenceError as exc: raise UseInferenceDefault from exc if not isinstance(obj_type, nodes.ClassDef): raise UseInferenceDefault("TypeError: arg 1 must be class") # The right hand argument is the class(es) that the given # object is to be checked against. try: class_container = _class_or_tuple_to_container( class_or_tuple_node, context=context ) except InferenceError as exc: raise UseInferenceDefault from exc try: issubclass_bool = helpers.object_issubclass(obj_type, class_container, context) except AstroidTypeError as exc: raise UseInferenceDefault("TypeError: " + str(exc)) from exc except MroError as exc: raise UseInferenceDefault from exc return nodes.Const(issubclass_bool) def infer_isinstance(callnode, context=None): """Infer isinstance calls :param nodes.Call callnode: an isinstance call :param InferenceContext: context for call (currently unused but is a common interface for inference) :rtype nodes.Const: Boolean Const value of isinstance call :raises UseInferenceDefault: If the node cannot be inferred """ call = arguments.CallSite.from_call(callnode) if call.keyword_arguments: # isinstance doesn't support keyword arguments raise UseInferenceDefault("TypeError: isinstance() takes no keyword arguments") if len(call.positional_arguments) != 2: raise UseInferenceDefault( "Expected two arguments, got {count}".format( count=len(call.positional_arguments) ) ) # The left hand argument is the obj to be checked obj_node, class_or_tuple_node = call.positional_arguments # The right hand argument is the class(es) that the given # obj is to be check is an instance of try: class_container = _class_or_tuple_to_container( class_or_tuple_node, context=context ) except InferenceError: raise UseInferenceDefault try: isinstance_bool = helpers.object_isinstance(obj_node, class_container, context) except AstroidTypeError as exc: raise UseInferenceDefault("TypeError: " + str(exc)) except MroError as exc: raise UseInferenceDefault from exc if isinstance_bool is util.Uninferable: raise UseInferenceDefault return nodes.Const(isinstance_bool) def _class_or_tuple_to_container(node, context=None): # Move inferences results into container # to simplify later logic # raises InferenceError if any of the inferences fall through node_infer = next(node.infer(context=context)) # arg2 MUST be a type or a TUPLE of types # for isinstance if isinstance(node_infer, nodes.Tuple): class_container = [ next(node.infer(context=context)) for node in node_infer.elts ] class_container = [ klass_node for klass_node in class_container if klass_node is not None ] else: class_container = [node_infer] return class_container def infer_len(node, context=None): """Infer length calls :param nodes.Call node: len call to infer :param context.InferenceContext: node context :rtype nodes.Const: a Const node with the inferred length, if possible """ call = arguments.CallSite.from_call(node) if call.keyword_arguments: raise UseInferenceDefault("TypeError: len() must take no keyword arguments") if len(call.positional_arguments) != 1: raise UseInferenceDefault( "TypeError: len() must take exactly one argument " "({len}) given".format(len=len(call.positional_arguments)) ) [argument_node] = call.positional_arguments try: return nodes.Const(helpers.object_len(argument_node, context=context)) except (AstroidTypeError, InferenceError) as exc: raise UseInferenceDefault(str(exc)) from exc def infer_str(node, context=None): """Infer str() calls :param nodes.Call node: str() call to infer :param context.InferenceContext: node context :rtype nodes.Const: a Const containing an empty string """ call = arguments.CallSite.from_call(node) if call.keyword_arguments: raise UseInferenceDefault("TypeError: str() must take no keyword arguments") try: return nodes.Const("") except (AstroidTypeError, InferenceError) as exc: raise UseInferenceDefault(str(exc)) from exc def infer_int(node, context=None): """Infer int() calls :param nodes.Call node: int() call to infer :param context.InferenceContext: node context :rtype nodes.Const: a Const containing the integer value of the int() call """ call = arguments.CallSite.from_call(node) if call.keyword_arguments: raise UseInferenceDefault("TypeError: int() must take no keyword arguments") if call.positional_arguments: try: first_value = next(call.positional_arguments[0].infer(context=context)) except InferenceError as exc: raise UseInferenceDefault(str(exc)) from exc if first_value is util.Uninferable: raise UseInferenceDefault if isinstance(first_value, nodes.Const) and isinstance( first_value.value, (int, str) ): try: actual_value = int(first_value.value) except ValueError: return nodes.Const(0) return nodes.Const(actual_value) return nodes.Const(0) def infer_dict_fromkeys(node, context=None): """Infer dict.fromkeys :param nodes.Call node: dict.fromkeys() call to infer :param context.InferenceContext: node context :rtype nodes.Dict: a Dictionary containing the values that astroid was able to infer. In case the inference failed for any reason, an empty dictionary will be inferred instead. """ def _build_dict_with_elements(elements): new_node = nodes.Dict( col_offset=node.col_offset, lineno=node.lineno, parent=node.parent ) new_node.postinit(elements) return new_node call = arguments.CallSite.from_call(node) if call.keyword_arguments: raise UseInferenceDefault("TypeError: int() must take no keyword arguments") if len(call.positional_arguments) not in {1, 2}: raise UseInferenceDefault( "TypeError: Needs between 1 and 2 positional arguments" ) default = nodes.Const(None) values = call.positional_arguments[0] try: inferred_values = next(values.infer(context=context)) except InferenceError: return _build_dict_with_elements([]) if inferred_values is util.Uninferable: return _build_dict_with_elements([]) # Limit to a couple of potential values, as this can become pretty complicated accepted_iterable_elements = (nodes.Const,) if isinstance(inferred_values, (nodes.List, nodes.Set, nodes.Tuple)): elements = inferred_values.elts for element in elements: if not isinstance(element, accepted_iterable_elements): # Fallback to an empty dict return _build_dict_with_elements([]) elements_with_value = [(element, default) for element in elements] return _build_dict_with_elements(elements_with_value) elif isinstance(inferred_values, nodes.Const) and isinstance( inferred_values.value, (str, bytes) ): elements = [ (nodes.Const(element), default) for element in inferred_values.value ] return _build_dict_with_elements(elements) elif isinstance(inferred_values, nodes.Dict): keys = inferred_values.itered() for key in keys: if not isinstance(key, accepted_iterable_elements): # Fallback to an empty dict return _build_dict_with_elements([]) elements_with_value = [(element, default) for element in keys] return _build_dict_with_elements(elements_with_value) # Fallback to an empty dictionary return _build_dict_with_elements([]) # Builtins inference register_builtin_transform(infer_bool, "bool") register_builtin_transform(infer_super, "super") register_builtin_transform(infer_callable, "callable") register_builtin_transform(infer_getattr, "getattr") register_builtin_transform(infer_hasattr, "hasattr") register_builtin_transform(infer_tuple, "tuple") register_builtin_transform(infer_set, "set") register_builtin_transform(infer_list, "list") register_builtin_transform(infer_dict, "dict") register_builtin_transform(infer_frozenset, "frozenset") register_builtin_transform(infer_type, "type") register_builtin_transform(infer_slice, "slice") register_builtin_transform(infer_isinstance, "isinstance") register_builtin_transform(infer_issubclass, "issubclass") register_builtin_transform(infer_len, "len") register_builtin_transform(infer_str, "str") register_builtin_transform(infer_int, "int") register_builtin_transform(infer_dict_fromkeys, "dict.fromkeys") # Infer object.__new__ calls MANAGER.register_transform( nodes.ClassDef, inference_tip(_infer_object__new__decorator), _infer_object__new__decorator_check, )